RAG
Foundational RAG System
Streamlit + FAISS Document Q&A
Overview
Early-stage RAG system built to explore document ingestion, embeddings, and grounded Q&A. Features multi-format document ingestion, metadata-aware chunking, and FAISS vector search with MMR reranking.
Key Capabilities
- Multi-format document ingestion
- Metadata-aware chunking
- FAISS vector search with MMR reranking
- Gemini / OpenAI embeddings
- Streamlit-based UI with chat history
AI Concepts
Retrieval-Augmented GenerationVector SearchPrompt Grounding & Safety
Tech Stack
PythonStreamlitFAISSGoogle GeminiOpenAI